G. M. M. Syahtama, I.S. Irawati*, A.F. Setiawan
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: inggar_septhia@ugm.ac.id
Bambu merupakan material alami yang melimpah di Indonesia, memiliki kekuatan tinggi, ringan, dapat diperbarui, serta berpotensi besar sebagai material konstruksi berkelanjutan. Namun, sifat ortotropik bambu membuat perilaku mekanisnya berbeda dengan kayu, sehingga standar pengujian kayu tidak dapat dijadikan acuan langsung untuk bambu. ISO 22157:2019 telah menetapkan metode pengujian lentur bambu, tetapi belum memberikan deskripsi detail mengenai bentuk kegagalan. Oleh karena itu, studi literatur ini dilakukan untuk meninjau secara sistematis metode pengujian dan jenis-jenis kegagalan lentur pada bambu utuh. Hasil kajian menunjukkan bahwa sebagian besar penelitian menggunakan ketentuan ISO 22157, khususnya panjang bentang minimal 30D untuk memastikan kegagalan lentur murni. Apabila bentang lebih pendek dari critical length, kegagalan geser lebih dominan terjadi. Variasi konfigurasi saddle, panjang bentang, dan kecepatan pembebanan juga memengaruhi pola kegagalan. Secara umum, tipe kegagalan lentur bambu dapat dikelompokkan berdasarkan panjang bentang dan jenis beban, yaitu momen dan geser. Beberapa peneliti bahkan mengidentifikasi mode geser tambahan, yaitu splitting failure (mode I), in-plane shear (mode II), dan kombinasi keduanya. Studi ini menegaskan pentingnya pengembangan standar pengujian yang lebih komprehensif dengan deskripsi eksplisit tipe kegagalan lentur bambu. Hal tersebut akan mendukung penerapan bambu sebagai material struktur yang andal dan berkelanjutan.
REFERENSI
Akinbade, Y., Harries, K. A., Flower, C. V., Nettleship, I., & Papadopoulos, C. (2019). Through-culm wall
mechanical behaviour of bamboo. Construction and Building Materials, https://doi.org/10.1016/j.conbuildmat.2019.04.214
Akinbade, Y., Nettleship, I., Papadopoulos, C., & Harries, K. A. (2020). Modelling full-culm bamboo as a naturally
varying graded material. https://doi.org/10.1007/s00226-020-01246-6 Wood Science and Technology, 55(1), 155–179.
Al-Rukaibawi, L. S., Omairey, S. L., & Károlyi, G. (2021). A numerical anatomy-based modelling of bamboo microstructure. Construction and https://doi.org/10.1016/j.conbuildmat.2021.125036 Guadua Bamboo Building Materials, 308, 125036. Archila-Santos, H. F., Martin P. Ansell, Ansell, M. P., Pete Walker, & Walker, P. (2012). Low Carbon Construction Using in Colombia. https://doi.org/10.4028/www.scientific.net/kem.517.127 Key Engineering Materials, 517, 127–134. Cacanando, C. J. D. C., López, L. F., Atienza, E., & Pradhan, N. P. N. (2024). Experimental Characterization of Mechanical Properties of Bambusa Blumeana Bamboo Poles and Determination of Design Values. Construction and Building Materials, 490, 142498. https://doi.org/10.2139/ssrn.5040792 Candelaria, Ma. D. E., Jaime Y. Hernandez, & Hernandez, J. Y. (2019). Determination Of The Properties Of Bambusa Blumeana Using Full-Culm Compression Tests And Layered Tensile Tests For Finite Element Model Simulation Using Orthotropic Material Modeling. ASEAN Engineering Journal, 9(1), 54–71. https://doi.org/10.11113/aej.v9.15508 Chaowana, K., Wisadsatorn, S., & Chaowana, P. (2021). Bamboo as a Sustainable Building Material—Culm Characteristics and Properties. Sustainability, 13(13), 7376. https://doi.org/10.3390/su13137376 Christanty, L., Kimmins, J. P., & Mailly, D. (1997). ‘Without bamboo, the land dies’: A conceptual model of the biogeochemical role of bamboo in an Indonesian agroforestry system. Forest Ecology and Management, 91(1), 83 91. https://doi.org/10.1016/S0378-1127(96)03881-9 Correal, J. F., Calvo, A. F., Trujillo, D. J. A., & Echeverry, J. S. (2022). Inference of mechanical properties and structural grades of bamboo by machine learning methods. Construction and Building Materials, 354, 129116. https://doi.org/10.1016/j.conbuildmat.2022.129116 Dixon, P. G., & Gibson, L. J. (2014). The structure and mechanics of Moso bamboo material. Journal of The Royal Society Interface, 11(99), 20140321. https://doi.org/10.1098/rsif.2014.0321 Ervianti, D., Widjaja, E. A., & Sedayu, A. (2018). Bamboo diversity of Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 20(1), 91–109. https://doi.org/10.13057/biodiv/d200112 Fritz, H., Penzl, P., & Kraus, M. (2025). Photogrammetric Inspection on Full-Culm Bending Tests of Italian Phyllostachys edulis. In S. Amziane, R. D. Toledo Filho, M. Y. R. Da Gloria, & J. Page (Eds.), Bio-Based Building Materials—Proceedings of ICBBM 2025 (Vol. 60, pp. 129–140). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-92777-5_11 Gnanaharan, R., Jja Jules Janssen, & Arce, O. O. (1995). Bending strength of guadua bamboo: Comparison of different testing procedures. Lianto, F., Trisno, R., Husin, D., & Teh, S. W. (2019). Changing the face of modern architecture: Bamboo as a construction material. case study: Green school, Bali – Indonesia. IOP Conference Series: Materials Science and Engineering, 508, 012023. https://doi.org/10.1088/1757-899X/508/1/012023 Liese, W., & Köhl, M. (Eds.). (2015). Bamboo: The Plant and its Uses (Vol. 10). Springer International Publishing. https://doi.org/10.1007/978-3-319-14133-6 Liu, Y., Zhang, J., Xu, J., Wang, Y., Li, B., & Zhang, S. (2023). Carbon emission-based life cycle assessment of rural residential buildings constructed with engineering bamboo: A case study in China. Journal of Building Engineering, 76, 107182. https://doi.org/10.1016/j.jobe.2023.107182 Lorenzo, R., Mimendi, L., & Li, H. (2019). Digital analysis of the geometric variability of bamboo poles in bending. MATEC Web of Conferences, 275, 01007. https://doi.org/10.1051/matecconf/201927501007 Lorenzo, R., Mimendi, L., Yang, D., Li, H., Mouka, T., & Dimitrakopoulos, E. G. (2021). Non-linear behaviour and failure mechanism of bamboo poles in bending. Construction and Building Materials, 305, 124747. https://doi.org/10.1016/j.conbuildmat.2021.124747 Mannan, S., Paul Knox, J., & Basu, S. (2017). Correlations between axial stiffness and microstructure of a species of bamboo. Royal Society Open Science, 4(1), 160412. https://doi.org/10.1098/rsos.160412 Maslucha, L., Putrie, Y. E., Rahma, S., Handryant, A. N., & Ramardani, V. (2020). Contribution of bamboo materials in architecture education towards sustainable community development. IOP Conference Series: Earth and Environmental Science, 456(1), 012047. https://doi.org/10.1088/1755-1315/456/1/012047 Meng, X., Zhang, Z., Wu, Y., Xu, F., & Feng, P. (2023). A comprehensive evaluation of the effects of bamboo nodes on the mechanical properties of bamboo culms. Engineering Structures, 297, 116975. https://doi.org/10.1016/j.engstruct.2023.116975 Mergiaw, T., Addissie, D., & Goedert, J. (2023). Failure Behavior and Failure Locations of Oxytenanthera Abyssinica Bamboo Culms under Bending Load. Sustainable Structures. https://doi.org/10.54113/j.sust.2023.000029