REVIU SENSOR UNTUK PENDETEKSI PEMBENGKOKAN REL AKIBAT PERUBAHAN IKLIM

M.F.A. SUHARTANTO1*, L.B. SUPARMA1, T. RAHMAN1
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: mfarisariefsuhartanto@mail.ugm.ac.id

INTISARI

Transportasi kereta api menghadapi tantangan, antara lain rel tekuk akibat metode Continuous Welded Rail (CWR). Pemasangan CWR memiliki kelemahan seperti tekanan termal, memerlukan Suhu Netral Rel (RNT) tertentu. Perubahan suhu yang ekstrim menimbulkan kekhawatiran, menyebabkan kerusakan dan berkurangnya ketersediaan layanan kereta. Tindakan preventif sangat penting untuk mencegah terjadinya tekuk rel akibat perubahan suhu yang ekstrem. Penelitian ini bertujuan untuk meninjau teknologi pemantauan jarak jauh yang canggih untuk rel tekuk. Metodologi yang digunakan yaitu studi tinjauan literatur, pengumpulan data sekunder, dan analisis teknologi yang menjanjikan. Penelitian ini mengeksplorasi dua teknologi yang menjanjikan untuk pemantauan jarak jauh rel tekuk: metode visi non-kontak dengan teknologi Digital Image Correlation (DIC) dan sensor Fiber Bragg Grattings (FBG). Teknologi DIC mengukur deformasi dan perubahan bentuk tanpa kontak fisik, sehingga mengurangi kerusakan pada sistem rel. Sensor FBG mendeteksi perubahan suhu dan deformasi pada objek atau struktur, memungkinkan distribusi beban dan analisis tegangan tarik. 

REFERENSI

Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A., & Passaro, V. M. N. (2018). Fibre Bragg Grating based
strain sensors: Review of technology and applications. In Sensors (Switzerland) (Vol. 18, Issue 9).
Du, C., Dutta, S., Kurup, P., Yu, T., & Wang, X. (2020). A review of railway infrastructure monitoring using fiber
optic sensors. In Sensors and Actuators, A: Physical (Vol. 303). Elsevier B.V.
Filograno, M. L., Corredera Guillén, P., Rodríguez-Barrios, A., Martin-López, S., Rodríguez-Plaza, M., Andrés
Alguacil, Á., & González-Herráez, M. (2012). Real-time monitoring of railway traffic using fiber Bragg grating
sensors. IEEE Sensors Journal, 12(1), 85–92
Hodge, V. J., O’Keefe, S., Weeks, M., & Moulds, A. (2015). Wireless sensor networks for condition monitoring in
the railway industry: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1088–1106.
Jones, E. M. C., & Reu, P. L. (2018). Distortion of Digital Image Correlation (DIC) Displacements and Strains from
Heat Waves. Experimental Mechanics, 58(7), 1133–1156.
Kerrouche, A., Boyle, W. J. O., Gebremichael, Y., Sun, T., Grattan, K. T. V., Täljsten, B., & Bennitz, A. (2008).
Field tests of fibre Bragg grating sensors incorporated into CFRP for railway bridge strengthening condition
monitoring. Sensors and Actuators A: Physical, 148(1), 68–74
Knopf, K. (2019). A Non-Contacting System for Rail Neutral Temperature and Stress Measurements. (Online),
(https://scholarcommons.sc.edu/etd, accessed 15 August 2023)
Leung, C. K. Y., Wan, K. T., Inaudi, D., Bao, X., Habel, W., Zhou, Z., Ou, J., Ghandehari, M., Wu, H. C., & Imai,
M. (2015). Review: optical fiber sensors for civil engineering applications. Materials and Structures/Materiaux et
Constructions, 48(4).
Murray, C. A., Andy Take, W., & Hoult, N. A. (2015). Measurement of vertical and longitudinal rail displacements
using digital image correlation. Canadian Geotechnical Journal, 52(2).
Palin, E. J., Thornton, H. E., Mathison, C. T., McCarthy, R. E., Clark, R. T., & Dora, J. (2013). Future projections of
temperature-related climate change impacts on the railway network of Great Britain. Climatic Change, 120(1–2), 71
93.
Pucillo,
G. P. (2019). Train-Induced Load Effects On The Thermal Track Buckling.
http://asmedigitalcollection.asme.org/JRC/proceedings-pdf/JRC2019/58523/V001T01A014/5171089/v001t01a014
jrc2019-1276.pdf
Sa’adin, S. L. B., Kaewunruen, S., & Jaroszweski, D. (2016). Risks of climate change with respect to the Singapore
Malaysia high-speed rail system. In Climate (Vol. 4, Issue 4).
Sahota, J. K., Gupta, N., & Dhawan, D. (2020). Fiber Bragg grating sensors for monitoring of physical parameters:
a comprehensive review. Optical Engineering, 59(06).
Sanchis, I. V., Franco, R. I., Zuriaga, P. S., & Fernández, P. M. (2020). Risk of increasing temperature due to climate
change on operation of the Spanish rail network. Transportation Research Procedia, 45, 5–12.
Sun, F., Hoult, N. A., Butler, L. J., & Zhang, M. (2022). Distributed monitoring of rail lateral buckling under axial
loading. Journal of Civil Structural Health Monitoring, 12(4), 757–774.
Takahashi, R., Hayano, K., Nakamura, T., & Momoya, Y. (2019). Integrated risk of rail buckling in ballasted tracks
at transition zones and its countermeasures. Soils and Foundations, 59(2).
Wang, P., Xie, K., Shao, L., Yan, L., Xu, J., & Chen, R. (2015). Longitudinal force measurement in continuous
welded rail with bi-directional FBG strain sensors. Smart Materials and Structures, 25(1).