Pengaruh Penambahan Borax terhadap Setting Time Pasta Geopolymer Berbahan Dasar Fly Ash dan Ground Granulated Blast Furnace Slag

Mhargareta Putri1, Iman Satyarno1 *, Djoko Sulistyo1
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: imansatyarno@ugm.ac.id INTISARI

Beton geopolymer merupakan salah satu solusi untuk mengatasi emisi gas CO2 yang tinggi akibat penggunaan material semen. Dalam penerapannya penggunaan beton geopolymer ini memiliki beberapa kekurangan antara lain workability yang rendah dan flash setting yang sering terjadi pada campuran. Dalam penelitian ini beberapa parameter diinvestigasi pengaruhnya terhadap setting time pasta geopolymer, parameter yang diselidiki adalah molaritas sodium hidroksida dari 10 M hingga 14 M dengan peningkatan setiap 2 M, perbandingan alkali/(FA+GGBFS) (A) yaitu 0,35 dan 0,45, perbandingan FA/GGBFS yaitu 50:50 dan 70:30, perbandingan larutan alkali (R) yaitu 1,5 dan 2, dan perbandingan penggunaan borax yaitu 1%, 3%, dan 5% untuk menyelidiki pengaruh yang ditimbulkan terhadap setting time dan kuat tekan. Penambahan borax terbukti dapat meningkatkan initial setting time hingga 30 menit pada variasi rasio 5%. Meskipun borax dapat meningkatkan setting time, namun penggunaan borax ini memiliki kelemahan yaitu dapat menurunkan kuat tekan, pada persentase 0% yaitu 94,54 MPa dan pada persentase 5% mengalami penurunan menjadi 60,96 MPa.

REFERENSI

Ahmed, H.U., Mohammed, A.A. and Mohammed, A. (2022) ‘Soft computing models to predict the compressive
strength of GGBS/FAgeopolymer concrete’, PLoS ONE, 17(5 5). Available at:
https://doi.org/10.1371/journal.pone.0265846.
Antoni et al. (2017) ‘Effect of adding acid solution on setting time and compressive strength of high calcium fly ash
based geopolymer’, in AIP Conference Proceedings. American Institute of Physics Inc. Available at:
https://doi.org/10.1063/1.5003525.
Antoni, A. et al. (2016) ‘The use of borax in deterring flash setting of high calcium fly ash based geopolymer’, in
Materials Science Forum. Trans Tech Publications Ltd, pp. 416–420. Available at:
https://doi.org/10.4028/www.scientific.net/MSF.857.416.
Antoni, A. et al. (2020) ‘Fresh and Hardened Properties of High Calcium Fly Ash-Based Geopolymer Matrix with
High Dosage of Borax’, Iranian Journal of Science and Technology – Transactions of Civil Engineering, 44, pp.
535–543. Available at: https://doi.org/10.1007/s40996-019-00330-7.
Astariani, N.K. et al. (2021) ‘Setting time of geopolymer binder based on Umeanyar slate stone powder’, in IOP
Conference Series: Earth and Environmental Science. IOP Publishing Ltd. Available at:
https://doi.org/10.1088/1755-1315/871/1/012002.
Cornelis, R. et al. (2018) ‘The Investigation on Setting Time and Strength of High Calcium Fly Ash Based
Geopolymer’, Applied Mechanics and Materials, 881, pp. 158–164. Available at:
https://doi.org/10.4028/www.scientific.net/amm.881.158.
Dave, N. et al. (2017) ‘Setting time and standard consistency of quaternary binders: The influence of cementitious
material addition and mixing’, International Journal of Sustainable Built Environment, 6(1), pp. 30–36. Available
at: https://doi.org/10.1016/j.ijsbe.2016.10.004.
Davraz, M. (2010) The Effects of Boron Compounds on the Properties of Cementitious Composites. Senirkent.
Duxson, P. et al. (2007) ‘The role of inorganic polymer technology in the development of “green concrete”’, Cement
and Concrete Research, 37(12), pp. 1590–1597. Available at: https://doi.org/10.1016/j.cemconres.2007.08.018.
Kusbiantoro, A. et al. (2013) ‘Development of Sucrose and Citric Acid as the Natural based Admixture for Fly Ash
based Geopolymer’, Procedia Environmental Sciences, 17, pp. 596–602. Available at:
https://doi.org/10.1016/j.proenv.2013.02.075.
Nath, P. and Sarker, P.K. (2014) ‘Effect of GGBFS on setting, workability and early strength properties of fly ash
geopolymer concrete cured in ambient condition’, Construction and Building Materials, 66, pp. 163–171. Available
at: https://doi.org/10.1016/j.conbuildmat.2014.05.080.
Nazari, A.; et al. (2014) Swinburne Research Bank Characteristics of boroaluminosilicate geopolymers. Available
at: http://www.emeraldinsight.com/journal/jaochttp://www.emeraldinsight.com/journal/jaoc.
Neupane, K. (2018) ‘High-Strength Geopolymer Concrete- Properties, Advantages and Challenges’, Advances in
Materials, 7(2), p. 15. Available at: https://doi.org/10.11648/j.am.20180702.11.
Phoo-ngernkham, T. et al. (2014) ‘The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium
fly ash geopolymer cured at ambient temperature’, Materials & Design, 55, pp. 58–65. Available at:
https://doi.org/10.1016/j.matdes.2013.09.049.
Sasui, S. et al. (2019) ‘Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in
NaOH & NaOH + Na2SiO3’, Materials, 13(1), p. 59. Available at: https://doi.org/10.3390/ma13010059.

Satyarno, I. et al. (2014) ‘Practical method for mix design of cement-based grout’, in Procedia Engineering. Elsevier
Ltd, pp. 356–365. Available at: https://doi.org/10.1016/j.proeng.2014.12.194.
Sunarsih, E.S. et al. (2023) ‘The effect of sodium hydroxide molarity on setting time, workability, and compressive
strength of fly ash-slag-based geopolymer mortar’, in Journal of Physics: Conference Series. Institute of Physics.
Available at: https://doi.org/10.1088/1742-6596/2556/1/012019.
Teo, W. et al. (2022) ‘Experimental Investigation on Ambient-Cured One-Part Alkali-Activated Binders Using
Combined High-Calcium Fly Ash (HCFA) and Ground Granulated Blast Furnace Slag (GGBS)’, Materials, 15(4).
Available at: https://doi.org/10.3390/ma15041612.
Wong, C.L. et al. (2023) ‘Properties of high calcium fly ash geopolymer incorporating recycled brick waste and
borax’, Hybrid Advances, p. 100130. Available at: https://doi.org/10.1016/j.hybadv.2023.100130.
Zhong, Q. et al. (2022) ‘Investigation of Setting Time and Microstructural and Mechanical Properties of
MK/GGBFS-Blended Geopolymer Pastes’, Materials, 15(23). Available at: https://doi.org/10.3390/ma15238431.