Alan Maulana Karisma1, Benazir1*, Nizam1, Widjo Kongko2, Khusnul Setia Wardani2
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
2Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Jalan Grafika No. 2, Yogyakarta, INDONESIA
*Corresponding author: benazir@ugm.ac.id
Kawasan Ekonomi Khusus (KEK) Mandalika di pesisir selatan Lombok memiliki potensi ekonomi dan pariwisata yang tinggi, namun juga menghadapi ancaman tsunami akibat aktivitas tektonik di zona subduksi. Penelitian ini melakukan simulasi potensi tsunami dengan skenario gempa megathrust berkekuatan 9,0 Mw menggunakan perangkat lunak TUNAMI-F1. Simulasi ini bertujuan untuk memperkirakan waktu kedatangan gelombang (ETA) dan ketinggian tsunami di kawasan pesisir Kuta. Data batimetri diperoleh dari GEBCO dengan resolusi yang telah disesuaikan, sementara parameter gempa diambil dari skenario multi-fault dengan enam titik observasi sebagai referensi. Hasil simulasi menunjukkan bahwa tsunami diperkirakan mencapai Teluk Kuta dalam waktu 12 menit 30 detik dan tiba di pesisir Desa Kuta dalam 13 menit 30 detik setelah gempa terjadi. Ketinggian maksimum gelombang mencapai 2,04 meter dengan penurunan muka air laut hingga -0,96 meter. Faktor seperti topografi dasar laut, kedalaman perairan, serta karakteristik sesar mempengaruhi variasi ketinggian tsunami di berbagai titik. Hasil penelitian ini menegaskan pentingnya sistem peringatan dini serta kesiapsiagaan masyarakat dalam mitigasi risiko tsunami di KEK Mandalika.
REFERENSI
Benazir, Syamsidik, Idris, Y., & Putra, N. P. (2023). Connecting community’s perspectives on tsunami risk to
anticipated future tsunamis: a reflection from a progress of tsunami preparedness from a coastal community in
Aceh-Indonesia after 19 years of the 2004 Indian Ocean Tsunami. Geoenvironmental Disasters, 10(1).
https://doi.org/10.1186/s40677-023-00252-7
Gibbons, S., Lorito, S., De La Asunción, M., Volpe, M., Selva, J., Macías, J., Sánchez-Linares, C., Brizuela, B.,
Vöge, M., Tonini, R., Lanucara, P., Glimsdal, S., Romano, F., Meyer, J., & Løvholt, F. (2022). The Sensitivity of
Tsunami Impact to Earthquake Source Parameters and Manning Friction in High-Resolution Inundation
Simulations. , 9. https://doi.org/10.3389/feart.2021.757618.
Goda, K., Yasuda, T., Mori, N., & Maruyama, T. (2016). New Scaling Relationships of Earthquake Source
Parameters for Stochastic Tsunami Simulation. Coastal Engineering Journal, 58, 1650010-1 – 1650010-40.
https://doi.org/10.1142/S0578563416500108.
Goda, K., Mori, N., Yasuda, T., Prasetyo, A., Muhammad, A., & Tsujio, D. (2019). Cascading Geological Hazards
and Risks of the 2018 Sulawesi Indonesia Earthquake and Sensitivity Analysis of Tsunami Inundation
Simulations. Frontiers in Earth Science. https://doi.org/10.3389/feart.2019.00261.
Gusman, A. R., Tanioka, Y., Matsumoto, H., & Iwasaki, S. I. (2009). Analysis of the Tsunami generated by the
great 1977 Sumba earthquake that occurred in Indonesia. Bulletin of the Seismological Society of America, 99(4),
2169–2179. https://doi.org/10.1785/0120080324
Ho, T., Satake, K., Watada, S., Hsieh, M., Chuang, R., Aoki, Y., Mulia, I., Gusman, A., & Lu, C. (2021). Tsunami
Induced by the Strike‐Slip Fault of the 2018 Palu Earthquake (Mw = 7.5), Sulawesi Island, Indonesia. Earth and
Space Science, 8. https://doi.org/10.1029/2020EA001400.
International Tsunami Information Center (ITIC) (1977). Field survey of the tsunami of the 1977 Sumba
earthquake, Tsunami Reports, 1977-12.
Kato, T., Ito, T., Abidin, H., & , A. (2007). Preliminary report on crustal deformation surveys and tsunami
measurements caused by the July 17, 2006 South off Java Island Earthquake and Tsunami, Indonesia. Earth,
Planets and Space, 59, 1055-1059. https://doi.org/10.1186/BF03352046.
Kim DC, Kim KO, Choi BH, Kim KH, Pelinovsky E (2013) Three-dimensional runup simulation of the 2004
Indian Ocean tsunami at the Lhok Nga twin peaks. JCoastal Res 65:272–277. https://doi.org/10.2112/si65-047.
Koshimura S, Oie T, Yanagisawa H, Imamura F (2009) Developing fragility functions For tsunami damage
estimation using numerical model and posttsunami data from banda aceh, Indonesia. Coastal Eng J 51(3):243–273.
https://doi.org/10.1142/S0578563409002004
Naik, M., & Behera, M. (2018). Effect of continental and nearshore slopes on tsunami height. Ocean Engineering.
https://doi.org/10.1016/J.OCEANENG.2018.05.069.
Nakamura, S. (1977) A Note on the Indonesian Earthquake and tsunami, 1977. Southeast Asian Studies, Vol. 17,
No. 1, June 1979
Pangaribuan, M., Wiloso, D., & Heriyadi, N. (2022). Analisis kinematik dan karakteristik sesar naik daerah
kedungjati dan sekitarnya kecamatan kedungjati, kabupaten grobogan, provinsi jawa tengah. Prosiding snast.
https://doi.org/10.34151/prosidingsnast.v8i1.4113
Park, H., & Jung, T. (2022). Sensitivity Analysis of Fault Failure Parameters to the Maximum Tsunami
Heights. Korea Society of Coastal Disaster Prevention. https://doi.org/10.20481/kscdp.2022.9.2.123.
Park, H., & Cox, D. (2016). Probabilistic assessment of near-field tsunami hazards: Inundation depth, velocity,
momentum flux, arrival time, and duration applied to Seaside, Oregon. Coastal Engineering, 117, 79-96.
https://doi.org/10.1016/J.COASTALENG.2016.07.011.
PusGen, 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Cetakan Pertama ed. Bandung: Pusat
Penelitian dan Pengembangan Perumahan dan Permukiman, Kementerian Pekerjaan Umum dan Perumahan
Rakyat.
Rahmadani, A., Wibowo, A., Anna, A., Sasmi, A., & Khoirunnisa, H. (2025). Analysis tsunami arrival time and
tsunami hazard using TUNAMI in the coastal area of Kulon Progo Regency. IOP Conference Series: Earth and
Environmental Science. https://doi.org/10.1088/1755-1315/1438/1/012019.
Röbke, B., & Vött, A. (2017). The tsunami phenomenon. Progress in Oceanography, 159, 296-
322. https://doi.org/10.1016/J.POCEAN.2017.09.003.
Synolakis, C. (2002). Tsunami and Seiche. https://doi.org/10.1201/9781420042443.CH9.
Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical
Research Letters, 23, 861-864. https://doi.org/10.1029/96GL00736.
Wijayanti, R., Pasma, G., Nurwijayanti, A., & Rachman, R. (2022). Tsunami Numerical Modelling in Ujung Kulon
National Park with the Earthquake Magnitude Scenario of 6.5 and 6.9 Mw. IOP Conference Series: Earth and
Environmental Science, 1118. https://doi.org/10.1088/1755-1315/1118/1/012070.
Williamson, A., Melgar, D., & Rim, D. (2019). The Effect of Earthquake Kinematics on Tsunami
Propagation. Journal of Geophysical Research: Solid Earth, 124, 11639 – 11650.
https://doi.org/10.1029/2019JB017522.
Xie, P., & Du, Y. (2024). CFD modeling of nonlinear tsunami wave run-up dynamics: Analytical calibration and
estimation methods. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2024.119495.
Zamora, N., Catalán, P., Gubler, A., & Carvajal, M. (2021). Microzoning Tsunami Hazard by Combining Flow
Depths and Arrival Times. , 8. https://doi.org/10.3389/feart.2020.591514.
Zhang, D., Yip, T., & Ng, C. (2009). Predicting tsunami arrivals: Estimates and policy implications. Marine Policy,
33, 643-650. https://doi.org/10.1016/J.MARPOL.2008.12.011.