Optimasi Penggunaan Semen Hidraulis dengan Subtitusi Fly ash untuk Beton Kuat Awal Tinggi Menggunakan Pendekatan Berbasis Volume Absolut

A. Rachim1, . Satyarno1*, A. Triwiyono
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: imansatyarno@ugm.ac.id

INTISARI

Pembukaan lalu lintas pada rigid pavement jalan tol dilakukan saat kuat tekan dan/atau kuat lentur minimun tercapai. Di Indonesia, spesifikasi kuat tekan dan kuat lentur masing-masing adalah 45 MPa dan 4,5 MPa pada umur 28 hari. Penundaan pembukaan lalu lintas berdampak signifikan sehingga percepatan dilakukan menggunakan beton kuat awal tinggi. Umumnya, beton kuat awal tinggi menggunakan faktor air semen (FAS) yang rendah dengan semen dalam jumlah banyak dan biasanya menggunakan semen tipe III yang lebih mahal atau paling tidak Ordinary Portland Cement (OPC). Namun, pendekatan ini kurang ramah lingkungan karena proses pembuatan klinker pada semen tipe III atau OPC menghasilkan emisi CO2 dan memperparah pemanasan global. Oleh karena itu, penelitian ini bertujuan mengembangkan beton kuat awal tinggi yang lebih ramah lingkungan dengan target kuat tekan 45 MPa dan kuat lentur 4,5 MPa hanya dalam waktu 3 hari. Solusi yang diusulkan pada penelitian ini adalah menggunakan semen hidraulis tipe high early (HE) yang mengandung klinker yang lebih rendah dibanding semen tipe III dan OPC. Pengurangan semen lebih lanjut dilakukan dengan cara mensubtitusi semen hidraulis dengan fly ash dengan proporsi 70:30 sehingga jumlah klinker semakin berkurang dan beton lebih ramah lingkungan. Namun, strategi ini menurunkan kuat awal akibat berkurangnya semen hidraulis dan reaksi hidrasi yang lebih lambat. Oleh karena itu, peningkatan kuat awal dilakukan dengan mengurangi faktor air sementius (FASm) menggunakan pendekatan berbasis volume absolut. Namun, penurunan FASm yang signifikan mengurangi workability beton. Oleh karena itu, penambahan admixture Sika® ViscoCrete®-1050 HE berbahan polycarboxylate tipe E (high range water reducer and accelerating) dilakukan untuk mempertahankan workability sesuai standar jalan tol (20-75 mm) sekaligus mempercepat proses pengerasan beton. Hasil penelitian menunjukkan bahwa target kuat tekan 45 MPa dan kuat lentur 4,5 MPa dapat dicapai hanya dalam 3 hari. Optimasi semen hidraulis dan fly ash dengan mengurangi FASm melalui pendekatan volume absolut berhasil mengurangi penggunaan
klinker tanpa mengorbankan kuat awal. Oleh karena itu, penelitian ini berhasil mengembangkan beton kuat awal tinggi yang
lebih ramah lingkungan.

REFERENSI

DAFTAR PUSTAKA
ASTM C39/C39M, 2021. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
United States.

ASTM C78/C78M, 2021. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third
Point Loading). United States.

ASTM C109, 2020. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or
[50-mm] Cube Specimens). Astm International.

ASTM C143/C143M, 2020. Standard Test Method for Slump of Hydraulic Cement Concrete. United States.

ASTM C230/C230M, 2020. Standard Specification for Flow Tabel for Use in Tests of Hydraulic Cement. United
States.

ASTM C494, 2011. Specification for Chemical Admixtures for Concrete. https://doi.org/10.1520/C0494_C0494M
11

ASTM C618, 2022. Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
https://doi.org/10.1520/C0618-22

ASTM C1157, 2020. Standard Performance Specification for Hydraulic Cement. Astm International.

ASTM C1611/C1611M, 2021. Standard Test Method for Slump Flow of Self Consolidating Concrete. United States.

Babalu, R., Anil, A., Sudarshan, K., Amol, P., 2023. Compressive strength, flexural strength, and durability of high
volume fly ash concrete. Innovative Infrastructure Solutions 8. https://doi.org/10.1007/s41062-023-01120-x

Bhat, R., Han, T., Sant, G., Neithalath, N., Kumar, A., 2024. A comprehensive analysis of hydration kinetics and
compressive strength development of fly ash-Portland cement binders. Journal of Building Engineering 88.
https://doi.org/10.1016/j.jobe.2024.109191

Chu, A.S.H., 2023. Volume-Based Concrete Mixture Design. ACI Struct J 120, 243–256.
https://doi.org/10.14359/51737295

Cornelis, R., Priyosulistyo, H., Satyarno, I., 2019. Workability and Strength Properties of Class C Fly Ash-Based
Geopolymer Mortar. https://doi.org/10.1051/matecconf/20192

Cornelis, R., Priyosulistyo, H., Satyarno, I., Rochmadi, 2018. The Investigation on Setting Time and Strength of
High Calcium Fly Ash Based Geopolymer. Applied Mechanics and Materials 881, 158–164.
https://doi.org/10.4028/www.scientific.net/amm.881.158

Cornelis, R., Priyosulityo, H., Satyarno, I., Rochmadi, Rustendi, I., 2022. Effect of the Mortar Volume Ratio on the
Mechanical Behavior of Class CI Fly Ash-Based Geopolymer Concrete. Civil Engineering Journal (Iran) 8,
1920–1935. https://doi.org/10.28991/CEJ-2022-08-09-012

Delatte, N., W. J. Weiss, P. C. Taylor, 2023. Optimizing Concrete Pavement Opening to Traffic.

Direktorat Jenderal Bina Marga, 2020. Spesifikasi umum jalan bebas hambatan dan jalan tol.

Dittrich, S., Neubauer, J., Goetz-Neunhoeffer, F., 2014. The influence of fly ash on the hydration of OPC within the
first 44 h – A quantitative in situ XRD and heat flow calorimetry study. Cem Concr Res 56, 129–138.
https://doi.org/10.1016/j.cemconres.2013.11.013

Elmrabet, R., El Harfi, A., El Youbi, M.S., 2019. Study of properties of fly ash cements. Mater Today Proc 13, 850
856. https://doi.org/10.1016/J.MATPR.2019.04.048
Freeseman, K., Hoegh, K., Izevbekhai, B.I., Khazanovich, L., 2016. Effect of Early Opening to Traffic on Fatigue
Damage to Concrete Pavement. Transportation Research Record: Journal of the Transportation Research Board
2590, 94–103. https://doi.org/10.3141/2590-11

Hanani, E., Satyarno, I., Sulistyo, D., 2024. Mix Design of Ambient Cured Geopolymer Concrete with Fly Ash,
GGBFS, and Borax. INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur 20, 265–276.
https://doi.org/10.21831/inersia.v20i2.74464

Jiang, L.H., Malhotra, V.M., 2000. Reduction in water demand of non-air-entrained concrete incorporating large
volumes of fly ash. Cem Concr Res 30, 1785–1789. https://doi.org/10.1016/S0008-8846(00)00397-5

Manomi, N., Sathyan, D., Anand, K.B., 2018. Coupled effect of superplasticizer dosage and fly ash content on
strength durability of concrete.
https://doi.org/10.1016/J.MATPR.2018.10.196

Myadaraboina, H., Gunasekara, C., Law, D., 2022. Engineering properties of very high volume fly ash composite.
Sustain Resilient Infrastruct 7, 775–788. https://doi.org/10.1080/23789689.2022.2033938

Nath, P., Sarker, P., 2011. Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Eng
14, 1149–1156. https://doi.org/10.1016/J.PROENG.2011.07.144

 
Rashad, A.M., 2015. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer.
International Journal of Sustainable Built Environment 4, 278–306. https://doi.org/10.1016/j.ijsbe.2015.10.002
Sao, Z., Kaladharan, G., Yoon, J., Reddy Kamasani, C., Rajabipour, F., Gombeda, M.J., 2024. Strategies for
Developing High-Volume Fly Ash Concrete with High Early-Age Strength for Precast Applications. Journal of
Materials in Civil Engineering 36. https://doi.org/10.1061/JMCEE7.MTENG-18004

Satyarno, I., Solehudina, A.P., Meyartoa, C., Hadiyatmokoa, D., Muhammada, P., Afnana, R., 2014. Practical method
for mix design of cement-based grout, dalam: Procedia Engineering. Elsevier Ltd, hlm. 356–365.
https://doi.org/10.1016/j.proeng.2014.12.194

Sungkono, K.K.D., Satyarno, I., Priyosulistyo, H., Perdana, I., 2023. Corrosion Resistance of High Calcium Fly Ash
Based Reinforced Geopolymer Concrete in Marine Environment. Civil Engineering and Architecture 11, 3175
3189. https://doi.org/10.13189/cea.2023.110827

Wulandary, I.A., Satyarno, I., Sulistyo, D., Budhie Wijatna, A., 2024. Simposium Nasional Teknologi Infrastruktur
Yogyakarta.

Yu, R., Spiesz, P., Brouwers, H.J.H., 2015. Development of an eco-friendly Ultra-High Performance Concrete
(UHPC) with efficient cement and mineral admixtures uses. Cem Concr Compos 55, 383–394.
https://doi.org/10.1016/J.CEMCONCOMP.2014.09.024

Yuhasnita, A., Siswosukarto, S., Satyarno, I., 2024. Mix Design of Geopolymer No-fines Concrete with Fly Ash and Ground Granulated Blast Furnace Slag. INERSIA lnformasi dan Ekspose Hasil Riset Teknik Sipil dan Arsitektur 20, 231–240. https://doi.org/10.21831/inersia.v20i2.74239