Evaluasi Performa Termal Perkerasan Aspal Berlapis Heat-Reflective Coating Pada Berbagai Tipe Gradasi Campuran Beraspal

Nindya Adha Kurnia Diningrum, Taqia Rahman*, Latif Budi Suparma
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: taqia.rahman@ugm.ac.id

INTISARI

Fenomena Urban Heat Island (UHI), yang disebabkan oleh penyerapan panas aspal konvensional, memerlukan solusi inovatif. Penelitian ini mengevaluasi efektivitas berbagai heat-reflective coatings (HRC) di iklim tropis Indonesia untuk menurunkan suhu permukaan aspal dan meningkatkan efisiensi termal. Penelitian ini mensimulasikan siklus pemanasan dan pendinginan 12 jam, menguji tiga gradasi aspal: Dense Graded (DG), Open Graded (OG), dan Gap Graded (GG). Setiap gradasi diaplikasikan dengan HRC berbeda, yaitu Resin Epoksi Putih (REP), BeCool (BC), Resin Epoksi Hijau (REH), dan Emulsi Akrilik Hijau (EAH). Hasilnya menunjukkan HRC sangat efektif mengurangi suhu. Resin Epoksi Hijau (DG REH) pada Dense Graded menjadi yang paling unggul, mencapai suhu puncak terendah 49,4°C dan suhu akhir terdingin 27,5°C. Keunggulan ini berkat kombinasi pigmen Titanium Dioksida dan Iron Oxide yang memantulkan radiasi inframerah dekat. Dalam fase suhu puncak, DG REH paling efektif menekan kenaikan suhu pada Dense Graded, dengan penurunan suhu puncak 35,1°C. Resin Epoksi Putih efektif pada Open Graded (21,6°C) dan Gap Graded (17,3°C). Dalam fase pendinginan, DG REH kembali unggul pada Dense Graded (10,6°C), sementara OG REP terbaik pada Open Graded (5,4°C), dan GG REP memimpin pada Gap Graded (2,6°C). Ini menegaskan DG REH sebagai material HRC paling efektif dalam melepaskan panas, mendukung upaya kota berkelanjutan.

REFERENSI

Akbari, H., Matthews, H.D., (2012). “Global cooling updates: Reflective roofs and pavements, dalam: Energy and
Buildings”. hlm. 2–6. https://doi.org/10.1016/j.enbuild.2012.02.055
Alhaqi, D.H., Nazalanzilni, A., Rahman, T., (2024). “Evaluation of the cooling performance of various heat-reflective
cool pavement coatings for Urban Heat Island mitigation”, IOP Conference Series: Earth and Environmental Science.
Institute of Physics. https://doi.org/10.1088/1755-1315/1416/1/012005
International
Chen, Y., Li, Z., Ding, S., Yang, X., Guo, T., (2022). “Research on heat reflective coating technology of asphalt pavement”.
Journal https://doi.org/10.1080/10298436.2021.1952410 of Pavement Engineering 23, 4455–4464.
Cichowicz, R., Bochenek, A.D., (2024). “Assessing the effects of urban heat islands and air pollution on human
quality of life”. Anthropocene. https://doi.org/10.1016/j.ancene.2024.100433
García Mainieri, J.J., Sen, S., Roesler, J., Al-Qadi, I.L., (2022). “Albedo Change Mechanism of Asphalt Concrete
Surfaces”. Transportation Research Record: Journal of the Transportation Research Board 2676, 763–772.
https://doi.org/10.1177/03611981221082567

Jiang, L., Wang, L., Wang, S., (2019). “A novel solar reflective coating with functional gradient multilayer structure
for cooling asphalt pavements” Contrasting interactions of urban heat islands with dry and moist heat waves and their
implications for urban heat stress. Urban Clim 56. https://doi.org/10.1016/j.uclim.2024.102050
Kim, D.H., Park, K., Baik, J.J., Jin, H.G., Han, B.S., (2024). “Contrasting interactions of urban heat islands with dry
and moist heat waves and their implications for urban heat stress.” Urban Clim 56.
https://doi.org/10.1016/j.uclim.2024.102050
Rahman, T., Zudhy Irawan, M., Noor Tajudin, A., Rizka Fahmi Amrozi, M., Widyatmoko, I., (2023). “Knowledge
mapping of cool pavement technologies for urban heat island Mitigation: A Systematic bibliometric analysis.”
Energy Build. https://doi.org/10.1016/j.enbuild.2023.113133
coatings for Rahman, T., Suhendri, Tajudin, A.N., Suwarto, F., Sudigdo, P., Thom, N., (2024). “Durability evaluation of heat reflective road https://doi.org/10.1016/j.scs.2024.105625
surfaces:
A systematic review”. Sustain Cities Soc.
Riaz, A., Yasir, N., Badin, G., Mahmood, Y., (2024). “Innovative Pavement Solutions: A Comprehensive Review
from Conventional Asphalt to Sustainable Colored Alternatives”. Infrastructures (Basel) 9, 186.
https://doi.org/10.3390/infrastructures9100186
Synnefa, A., Santamouris, M., Livada, I., (2006). “A study of the thermal performance of reflective coatings for the
urban environment”. Solar Energy 80, 968–981. https://doi.org/10.1016/j.solener.2005.08.005
Thushara, V.T., Murali Krishnan, J., (2020). “Permanent Deformation Characterisation of Gap-Graded and
Continuous Graded Aggregate Blends for Bituminous Mixtures”. hlm. 493–505. https://doi.org/10.1007/978-3-030 48679-2_47
for mitigating
Yang, J., Wang, Z.H., Kaloush, K.E., (2015). “Environmental impacts of reflective materials: Is high albedo a “silver
bullet” urban heat https://doi.org/10.1016/j.rser.2015.03.092
island? Renewable and Sustainable Energy Reviews”.
Yu, F., Guo, J., Liu, J., Cai, H., Huang, Y., (2023). “A review of the pore structure of pervious concrete: Analyzing
method, characterization parameters and the effect on performance”. Constr Build Mater.
https://doi.org/10.1016/j.conbuildmat.2022.129971