 
															R. Syafira, J.S.M. Ahmad*, S.P. Saraswati
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: johan.syafri.ma@ugm.ac.id
Limbah sludge run-off yang dihasilkan dari kegiatan pertambangan batubara mengandung padatan tersuspensi (TSS), logam berat, dan senyawa kompleks yang berpotensi mencemari lingkungan apabila tidak diolah dengan tepat. Penelitian ini bertujuan untuk mengevaluasi karakteristik fisikokimia sludge run-off serta efektivitas proses filtrasi mekanis dalam menurunkan parameter pencemar, dengan acuan baku mutu air berdasarkan Permenkes No. 2 Tahun 2023. Sampel limbah diperoleh dari PT. X dan diuji di Laboratorium Teknik Penyehatan dan Lingkungan, Universitas Gadjah Mada. Parameter yang dianalisis meliputi pH, TDS, EC, ORP, TSS, zeta potensial, mikro partikel, serta kualitas air pasca-filtrasi. Hasil penelitian menunjukkan bahwa filtrasi mampu menurunkan kadar TSS secara signifikan, namun kurang efektif dalam mereduksi kandungan ion terlarut dan logam berat. Nilai zeta potensial yang tinggi menunjukkan kestabilan koloid yang menghambat proses filtrasi. Evaluasi kualitas air bersih dari enam titik lokasi menunjukkan bahwa beberapa parameter fisika, kimia, dan mikrobiologi tidak memenuhi standar, terutama pada TDS, kekeruhan, warna, Fe, Mn, serta kontaminasi mikrobiologis (E. coli dan Total Coliform). Oleh karena itu, diperlukan pengolahan lanjutan dengan pendekatan integratif agar hasil olahan air limbah tambang memenuhi standar lingkungan 
dan kesehatan.
REFERENSI
Bal, V. (2019). “Stability characteristics of nanoparticles in a laminar linear shear flow in the presence of DLVO and 
non-DLVO forces.” Langmuir, 35(40), 13041–13049. 
Balintova, M., Holub, M., Stevulova, N., Cigasova, J., and Tesarcikova, M. (2014). “Sorption in acidic environment – Biosorbents in comparison with commercial adsorbents.” Chemical Engineering Transactions, 39, 625–630. 
Balintova, M., Pavlikova, P., Holub, M., and Petrilakova, A. (2013). “Leaching of heavy metals from contaminated 
sediment.” Chemical Engineering Transactions, 35, 865–870. 
Bellmann, C., Petzold, G., Mende, M., and Hempel, S. (2008). “Evaluation of nanoparticle containing dispersions.” 
VDI Berichte. 
Burlingame, G. A., Dietrich, A. M., and Whelton, A. J. (2007). “Understanding the basics of tap water taste.” J. 
Amer. Water Works Assoc., 99(5), 100–111. 
Clark, E. V., Zipper, C. E., Daniels, W. L., Orndorff, Z. W., and Keefe, M. J. (2017). “Modeling patterns of total 
dissolved solids release from central Appalachia, USA, mine spoils.” J. Environ. Qual., 46(2), 375–383. 
Harbottle, D., Webber, G., Fairweather, M., Rhodes, D., and Biggs, S. (2006). “Applying the quartz crystal 
microbalance technique to determine the stability of colloidal suspensions.” Proc., AIChE Annual Meeting, American 
Institute of Chemical Engineers. 
Jahanirad, M., Nasrabadi, T., and Karbassi, A. (2023). “Role of salinity and oxidation-reduction potential in mobility 
of heavy metals in suspended sediments at estuarine zone.” Pollution, 9(1), 183–193. 
Jia, X., Zhao, Q., Guo, F., Ma, S., Zhang, Y., and Liu, J. (2017). “Evaluation of potential factors affecting deriving 
conductivity benchmark by utilizing weighting methods in Hun-Tai River Basin, Northeastern China.” Environ. 
Monit. Assess., 189, Article 355. 
Kementerian Kesehatan Republik Indonesia. (2023). Peraturan Menteri Kesehatan Nomor 2 Tahun 2023 tentang 
Perubahan atas Peraturan Menteri Kesehatan Nomor 492/MENKES/PER/IV/2010 tentang Persyaratan Kualitas Air 
Minum. 
Khatri, N., Tyagi, S., and Rawtani, D. (2017). “Recent strategies for the removal of iron from water: A review.” J. 
Water Process Eng., 20, 291–304. 
Leonov, V., Leonova, L., Cherepanov, D., Savin, L., and Tkalich, A. (2022). “The growth kinetics of pathogenic 
microorganisms under conditions modelling the vital functions of iron-oxidizing bacteria.” BioNanoScience, 12(1), 
299–307. 
Lu, L.-L., Liang, Y., Fang, Y.-Y., Deng, Y., and Jiang, Y.-M. (2021). “Research progress in central nervous system 
toxicity caused by excessive manganese or iron exposure alone or in combination.” Chin. J. Pharmacol. Toxicol., 
35(9), 641–647. 
Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J. P., and others. (2022). “Challenges and avenues for acid 
mine drainage treatment, beneficiation, and valorisation in circular economy: A review.” Ecol. Eng., 181, 106740. 
Missana, T., Benedicto, A., Mayordomo, N., and Alonso, U. (2014). “Analysis of anion adsorption effects on alumina 
nanoparticles stability.” Appl. Geochem., 47, 141–150. 
Ngole-Jeme, V. M., and Ndava, J. (2023). “The implications of AMD induced acidity, high metal concentrations and 
ochre precipitation on aquatic organisms.” Pol. J. Environ. Stud., 32(5). 
Qiao, Y., Zhu, Z., Yang, L., and Liu, Z. (2018). “Monitoring and simulated experiments of oxidation-reduction 
potential of boiler feedwater at high temperatures.” J. Chin. Soc. Corros. Prot., 38(1). 
Tripathy, D. P. (2014). “Prevention and treatment of acid mine drainage: An overview.” In Singh, G., Singh, A. R., 
and Singh, R. N. (Eds.), Recent Trends in Modelling of Environmental Contaminants, Springer, 33–52.
Yoon, H., and Yoon, J. (2022). “The impact evaluation of acid mine drainage on zebrafish (Danio rerio) and water 
fleas (Daphnia magna) in the vicinity of the Geum River Basin in Korea.” Int. J. Environ. Res. Public Health, 19(24), 
16470. 
Zhang, Z. (2024). “A new method for estimating zeta potential of carboxylic acids’ functionalised particles.” Mol. 
Phys., 122(3).