F. H. Rasyid, A. F. Setiawan*, I. S. Irawati
1Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada, Yogyakarta, INDONESIA
*Corresponding author: angga.fajar.s@ugm.ac.id
Penelitian ini bertujuan untuk mengevaluasi efektivitas sistem viscoelastic damper (VED) dalam meningkatkan performa seismik struktur beton bertulang melalui pendekatan numerik berbasis pemodelan nonlinier. Model histeretik Bouc–Wen digunakan untuk merepresentasikan respons VED terhadap pembebanan gempa, dengan mempertimbangkan fenomena degradasi kekakuan dan efek siklik. Berbeda dengan studi sebelumnya yang umumnya menggunakan analisis pushover, penelitian ini mengadopsi skema quasi-static cyclic loading berbasis displacement-controlled untuk menggambarkan respons histeretik secara akurat. Model numerik dibangun dalam dua skala, yaitu skala mikro (tingkat material dan elemen VED) dan makro (struktur rangka dua lantai) dengan konfigurasi elemen twoNodeLink vertikal antar lantai untuk memodelkan VED. Validasi dilakukan dengan membandingkan hasil simulasi numerik terhadap data eksperimen dari Eskandari Nasab et al. (2021). Hasil menunjukkan bahwa model Bouc–Wen mampu menangkap karakteristik nonlinier viskoelastik secara memadai, dibuktikan melalui kesesuaian kurva histeresis gaya-perpindahan dan kapasitas disipasi energi terhadap hasil pengujian. Penelitian ini menunjukkan potensi pendekatan numerik dalam mendukung perancangan dan analisis sistem peredam energi untuk retrofit struktur tahan gempa
REFERENSI
Eskandari Nasab, M. S., Javidan, M. M., Chun, S., & Kim, J. (2021). Experimental study on seismic retrofit of a RC frame using
viscoelastic dampers. Structures, 34, 771–786. https://doi.org/10.1016/j.istruc.2021.10.035.
Eskandari Nasab, M. S., Chun, S., & Kim, J. (2022). Seismic retrofit system made of viscoelastic polymer composite material
and thin steel plates. Steel and Composite Structures, 43(2), 153–164. https://doi.org/10.12989/scs.2022.43.2.153.
Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of Engineering Mechanics, 102(2), 249–263.
https://doi.org/10.1061/(ASCE)0733-9399(1976)102:2(249).
Xue, Y. (2013). A modified Bouc–Wen model for viscoelastic dampers under large deformation. Journal of Sound and Vibration,
332(2), 389–403. https://doi.org/10.1016/j.jsv.2012.08.036.
Foliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6),
1013–1022. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013).
Hossain, M. S., & Ashraf, M. (2012). Application of Bouc–Wen model to represent nonlinear behavior of MR damper. Journal
of Mechanical Engineering, 43(2), 113–120.
Christopoulos, C., & Filiatrault, A. (2006). Principles of Passive Supplemental Damping and Seismic Isolation. IUSS Press.
Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees Command Language Manual. Pacific Earthquake
Engineering Research Center.
FEMA 356. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management
Agency. Constantinou, M. C., & Symans, M. D. (1992). Experimental study of seismic response of buildings with supplemental fluid
dampers. Journal of Structural Engineering, 118(4), 1107–1124. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:4(1107).
Spencer Jr, B. F., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering, 129(7), 845–
856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
Hwang, J. S., & Fu, C. C. (2016). Performance evaluation of viscoelastic dampers under earthquake loading. Earthquake
Engineering & Structural Dynamics, 45(1), 157–172. https://doi.org/10.1002/eqe.2649.
Jiang, Z., Li, Y., & Li, H. (2018). Parametric study of viscoelastic dampers for seismic mitigation. Engineering Structures, 165,
233–243. https://doi.org/10.1016/j.engstruct.2018.03.010.
Kumar, M., & Reddy, G. R. (2015). Modeling and analysis of viscoelastic dampers for seismic applications. Nuclear Engineering
and Design, 290, 214–226. https://doi.org/10.1016/j.nucengdes.2015.01.005.
Zhang, R., & Soong, T. T. (1992). Seismic design of viscoelastic dampers for structural applications. Journal of Structural Engineering, 118(5), 1375–1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375). Takewaki, I. (2000). Optimal damper placement for minimum transfer functions. Earthquake Engineering & Structural Dynamics, 29(4), 587–603. https://doi.org/10.1002/eqe.933. Bagheri, S., & Taghikhany, T. (2020). Nonlinear modeling of MR and VED dampers using OpenSees. Structural Control and Health Monitoring, 27(3), e2509. https://doi.org/10.1002/stc.2509. Shariatmadar, H., & Mohammadi, M. (2022). Experimental and numerical study on combined friction-viscoelastic dampers. Engineering Structures, 256, 113981. https://doi.org/10.1016/j.engstruct.2022.113981. Javidan, M. M., Kim, J., & Eskandari Nasab, M. S. (2020). Seismic performance of RC frames retrofitted with viscoelastic dampers. Engineering Structures, 216, 110752. https://doi.org/10.1016/j.engstruct.2020.110752.